Effects of the noradrenergic system in rat white matter exposed to oxygen-glucose deprivation in vitro.

نویسندگان

  • Maria A Nikolaeva
  • Sandra Richard
  • Abdeslam Mouihate
  • Peter K Stys
چکیده

Norepinephrine (NE) is released in excess into the extracellular space during oxygen-glucose deprivation (OGD) in brain, increasing neuronal metabolism and aggravating glutamate excitoxicity. We used isolated rat optic nerve and spinal cord dorsal columns to determine whether the noradrenergic system influences axonal damage in white matter. Tissue was studied electrophysiologically by recording the compound action potential (CAP) before and after exposure to 60 min of OGD at 36 degrees C. Depleting catecholamine stores with reserpine was protective and improved CAP recovery after 1 h of reperfusion from 17% (control) to 35%. Adding NE during OGD decreased CAP recovery to 8%, and adding NE to reserpine during OGD eliminated the protective effect of the latter. Selective inhibitors of Na(+)-dependent norepinephrine transport desipramine and nisoxetine improved recovery to 58% and 44%, respectively. alpha2 adrenergic receptor agonists UK14,304 and medetomidine improved CAP recovery to 41% and 46% after 1 h of OGD. Curiously, alpha2 antagonists alone were also highly protective (e.g., atipamezole: 86% CAP recovery), at concentrations that did not affect baseline excitability. The protective effect of alpha2 receptor modulation was corroborated by imaging fluorescent Ca(2+) and Na(+) indicators within axons during OGD. Both agonists and antagonists significantly reduced axonal Ca(2+) and Na(+) accumulation in injured axons. These data suggest that the noradrenergic system plays an active role in the pathophysiology of axonal ischemia and that alpha2 receptor modulation may be useful against white matter injury.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nimodipine Protects PC12 Cells against Oxygen-Glucose Deprivation

The protective effect of a L-type calcium channel blocker, nimodipine, on cell injury induced by oxygen-glucose deprivation (OGD) in PC12 cells was investigated. PC12 cells were exposed to in-vitro oxygen-glucose deprivation (30 minutes and 60 minutes respectively) in the presence or absence of nimodipine (10mM/L) in three different time schedules (pre-24h, pre-3h and concurrently). Cellular vi...

متن کامل

Resistance of isolated mammalian spinal cord white matter to oxygen-glucose deprivation.

We found that isolated guinea pig spinal cord white matter is resistant to acute oxygen-glucose deprivation. Sixty minutes of oxygen-glucose deprivation resulted in a 60% reduction of compound action potential (CAP) conductance, and there was a near complete recovery after 60 min reperfusion. Corresponding horseradish peroxidase-exclusion assay showed little axonal membrane damage. To further d...

متن کامل

The Effect of Noscapine on Oxygen-Glucose Deprivation on Primary Murine Cortical Neurons in High Glucose Condition

AbstractIn the present work we set out to investigate the neuroprotective effects of noscapine (0.5-2 µM) in presence of D-glucose on primary murine foetal cortical neurons after oxygen–glucose deprivation/24 hrs recovery. Cell viability, nitric oxide production and intracellular calcium ([ca2+]i) levels were evaluated by MTT assay, the modified Griess method and Fura-2 respectively. 25 and 100...

متن کامل

The Effect of Noscapine on Oxygen-Glucose Deprivation on Primary Murine Cortical Neurons in High Glucose Condition

AbstractIn the present work we set out to investigate the neuroprotective effects of noscapine (0.5-2 µM) in presence of D-glucose on primary murine foetal cortical neurons after oxygen–glucose deprivation/24 hrs recovery. Cell viability, nitric oxide production and intracellular calcium ([ca2+]i) levels were evaluated by MTT assay, the modified Griess method and Fura-2 respectively. 25 and 100...

متن کامل

Pioglitazone alleviates oxygen and glucose deprivation-induced injury by up-regulation of miR-454 in H9c2 cells

Objective(s): Pioglitazone, an anti-diabetic agent, has been widely used to treat type II diabetes. However, the effect of pioglitazone on myocardial ischemia reperfusion injury (MIRI) is still unclear. Herein, the objective of this study is to learn about the regulation and mechanism of pioglitazone effects on oxygen glucose deprivation (OGD)-induced myocardial cell injury.Materials and Method...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 29 6  شماره 

صفحات  -

تاریخ انتشار 2009